------------------------------------------------------
[BBC系列]:数学故事The Story of Maths-1080P高清迅雷网盘下载
------------------------------------------------------
历史,科学纪录片由马库斯·杜·萨图伊(Marcus du Sautoy)主持,由英国广播公司(BBC)在2008年出版-英语旁白History, Science Documentary hosted by Marcus du Sautoy and published by BBC in 2008- English narration
------------------------------------------------------
牛津大学教授马库斯·杜·萨图伊(Marcus du Sautoy)提出了关于数学历史的四部分系列。[编辑]???宇宙的语言在展示了基本数学对我们生活的重要性之后,杜·萨图伊探索了古埃及,美索不达米亚和希腊的数学。他发现了埃及使用的基于十个手指的十进制系统,而在前美索不达米亚,他发现我们今天所说的时间是基于巴比伦Base 60数字系统。在希腊,他着眼于包括柏拉图,欧几里得,阿基米德和毕达哥拉斯在内的一些数学巨人,因着手将数学从一种计算工具转变为我们今天所知道的分析学科而著称。[编辑]??东方的天才当古希腊陷入衰落时,随着欧洲进入黑暗时代,数学的发展停滞不前,但是东方的数学达到了新的高度。杜·萨托伊(Du Sautoy)访问中国,探索数学如何帮助建立帝国中国,并且是长城等惊人的工程壮举的核心。在印度,他发现了数字零的符号是如何发明的,以及印度数学家对新数字的理解。无限和负数的概念。在中东,他着眼于代数新语言的发明以及东方知识通过诸如斐波那契数列的创建者莱昂纳多·斐波那契之类的数学家向西方的传播。[编辑]??太空前沿到17世纪,欧洲已经从中东取代了中东,成为世界上数学观念的强国。在理解固定在时间和空间上的物体的几何形状方面取得了长足的进步。现在竞赛正在寻找描述运动中物体的数学方法。在该程序中,Marcus du Sautoy探索了RenéDescartes和Pierre Fermat的工作,他们的著名的《最后定理》使数学家困惑了350多年。他还研究了艾萨克·牛顿(Isaac Newton)对微积分的发展,并寻找拓扑或or弯曲几何之父伦纳德·欧拉(Leonard Euler)和卡尔·弗里德里希·高斯(Carl Friedrich Gauss),后者在24岁时就发明了一种处理方程的新方法:模算术。[编辑]??致无限无限Marcus du Sautoy总结了对数学历史的研究,着眼于20世纪数学家所面临的一些未解决的重大问题。在探索了Georg Cantor的无穷著作和Henri Poincare的著作之后关于混沌理论,他研究了库尔特·戈德尔(Kurt Godel)的发现如何使数学本身陷入混乱,后者表明了不可知论是数学的组成部分,而保罗·科恩(Paul Cohen)则确定了几种不同类型的数学在其中相互冲突。可以通过回答同样的问题来解决问题。他在结束旅程的过程中考虑了当今尚未解决的重大数学问题,包括关于素数分布的猜想Riemann假说。凡是能证明黎曼定理的人,都将获得一百万美元的奖金和一本历史书籍。Four-part series about the history of mathematics, presented by Oxford professor Marcus du Sautoy.[edit] The Language of the Universe After showing how fundamental mathematics is to our lives, du Sautoy explores the mathematics of ancient Egypt, Mesopotamia and Greece.In Egypt, he uncovers use of a decimal system based on ten fingers of the hand, while in former Mesopotamia he discovers that the way we tell the time today is based on the Babylonian Base 60 number system.In Greece, he looks at the contributions of some of the giants of mathematics including Plato, Euclid, Archimedes and Pythagoras, who is credited with beginning the transformation of mathematics from a tool for counting into the analytical subject we know today.[edit] The Genius of the East When ancient Greece fell into decline, mathematical progress stagnated as Europe entered the Dark Ages, but in the East mathematics reached new heights. Du Sautoy visits China and explores how maths helped build imperial China and was at the heart of such amazing feats of engineering as the Great Wall.In India, he discovers how the symbol for the number zero was invented and Indian mathematicians' understanding of the new concepts of infinity and negative numbers.In the Middle East, he looks at the invention of the new language of algebra and the spread of Eastern knowledge to the West through mathematicians such as Leonardo Fibonacci, creator of the Fibonacci Sequence.[edit] The Frontiers of Space By the 17th century, Europe had taken over from the Middle East as the world's powerhouse of mathematical ideas. Great strides had been made in understanding the geometry of objects fixed in time and space. The race was now on to discover the mathematics to describe objects in motion.In this programme, Marcus du Sautoy explores the work of Ren?? Descartes and Pierre Fermat, whose famous Last Theorem would puzzle mathematicians for more than 350 years. He also examines Isaac Newton's development of the calculus, and goes in search of Leonard Euler, the father of topology or a bendy geometry and Carl Friedrich Gauss, who, at the age of 24, was responsible for inventing a new way of handling equations: modular arithmetic.[edit] To Infinity and Beyond Marcus du Sautoy concludes his investigation into the history of mathematics with a look at some of the great unsolved problems that confronted mathematicians in the 20th century.After exploring Georg Cantora¤™s work on infinity and Henri Poincare's work on chaos theory, he looks at how mathematics was itself thrown into chaos by the discoveries of Kurt Godel, who showed that the unknowable is an integral part of maths, and Paul Cohen, who established that there were several different sorts of mathematics in which conflicting answers to the same question were possible.He concludes his journey by considering the great unsolved problems of mathematics today, including the Riemann Hypothesis, a conjecture about the distribution of prime numbers. A million dollar prize and a place in the history books await anyone who can prove Riemann's theorem.
------------------------------------------------------
【技术参数】——
Xvid Version
视频编码: XVID
比特率: 1188 kbps
Video 分辨率: 368x656
Video 画面比例: 9x16 (1:1.78)
音频编码: MPEG-1 Layer 3 (MP3) <0x0055>
音频比特率: 129 kbps
音频串流: 1
Total number of files: 1
分集时长: 57 min 55.44 s (86886 Frames)
体积: 549.99 MB
Subtitles: English
x264 Version
视频编码: x264 CABAC Main@3.1
比特率: 1650 Kbps
Video 分辨率: 832x468
Video 画面比例: 16:9
音频编码: AAC
音频比特率: 128 Kbps ABR 48KHz
Audio 声道数: 2
时长: 58 mins
帧速率: 25帧速率
分集数: 4
体积: 740 MB
来源: PDTV
编码: JungleBoy【Technical Specs】——
Xvid Version
Video Codec: XVID
Video Bitrate: 1188 kbps
Video Resolution: 368x656
Video Aspect Ratio: 9x16 (1:1.78)
Audio Codec: MPEG-1 Layer 3 (MP3) <0x0055>
Audio BitRate: 129 kbps
Audio Streams: 1
Total number of files: 1
RunTime Per Part: 57 min 55.44 s (86886 Frames)
Part Size: 549.99 MB
Subtitles: English
x264 Version
Video Codec: x264 CABAC Main@3.1
Video Bitrate: 1650 Kbps
Video Resolution: 832x468
Video Aspect Ratio: 16:9
Audio Codec: AAC
Audio Bitrate: 128 Kbps ABR 48KHz
Audio Channels: 2
Run-Time: 58 mins
Framerate: 25FPS
Number of Parts: 4
Part Size: 740 MB
Source: PDTV
Encoded by: JungleBoy
------------------------------------------------------
相关纪录片:
----------------------------------
Links
Further Information
bbc.co.uk
Release Post
MVGroup.org (ed2k)
MVGroup.org (torrent)
DocsPT.com
DonkeyHeaven.com
P2P-United.org
Phantom P2P.com
phantomp2p.com
ShareTheFiles.com
ShareVirus.com
VeryCD.com
Related Documentaries
Inifinite Secrets the Genius of Archimedes
The Code
Making Millions the Easy Way
Kids Dont count
To Infinity and Beyond
The Story of 1
Beautiful Young Minds
------------------------------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
<s> </s>
<b>OR</b>
<s> </s>本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
本片字幕下载-(纪录片部落:www.xitongle.com)
-----------------------------------
------------------------------------------------------
纪录片部落下载地址:
|